Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex

نویسندگان

  • Justine Witosch
  • Eva Wolf
  • Naoko Mizuno
چکیده

The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tim–Tipin dysfunction creates an indispensible reliance on the ATR–Chk1 pathway for continued DNA synthesis

The Tim (Timeless)-Tipin complex has been proposed to maintain genome stability by facilitating ATR-mediated Chk1 activation. However, as a replisome component, Tim-Tipin has also been suggested to couple DNA unwinding to synthesis, an activity expected to suppress single-stranded DNA (ssDNA) accumulation and limit ATR-Chk1 pathway engagement. We now demonstrate that Tim-Tipin depletion is suff...

متن کامل

Crystal structure of the N-terminal domain of human Timeless and its interaction with Tipin

Human Timeless is involved in replication fork stabilization, S-phase checkpoint activation and establishment of sister chromatid cohesion. In the cell, Timeless forms a constitutive heterodimeric complex with Tipin. Here we present the 1.85 Å crystal structure of a large N-terminal segment of human Timeless, spanning amino acids 1-463, and we show that this region of human Timeless harbours a ...

متن کامل

Maintain Genomic Stability: Multitask of DNA Replication Proteins

The genome is highly vulnerable to damage, especially during DNA replication because chromosome is decondensed and the replication forks are extremely sensitive to DNA damage agents. The eukaryotic replisome, which consists of a large number of replication fork-associated proteins, is essential for the elongation of replication forks during DNA replication. This complex contains DNA polymerases...

متن کامل

Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion.

The Timeless-Tipin protein complex has been reported to be important for replication checkpoint and normal DNA replication processes. However, the precise mechanisms by which Timeless-Tipin preserves genomic integrity are largely unclear. Here, we describe the roles of Timeless-Tipin in replication fork stabilization and sister chromatid cohesion. We show in human cells that Timeless is recruit...

متن کامل

TIMELESS Forms a Complex with PARP1 Distinct from Its Complex with TIPIN and Plays a Role in the DNA Damage Response

PARP1 is the main sensor of single- and double-strand breaks in DNA and, in building chains of poly(ADP-ribose), promotes the recruitment of many downstream signaling and effector proteins involved in the DNA damage response (DDR). We show a robust physical interaction between PARP1 and the replication fork protein TIMELESS, distinct from the known TIMELESS-TIPIN complex, which activates the in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014